Differentiation and integration:

- $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
- $\frac{d}{d x}(\ln x)=\frac{1}{x}$
- $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- $\frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \ln a$
- $\frac{d}{d x}(f(x))^{n}=n(f(x))^{n-1} \cdot f^{\prime}(x)$
- $\frac{d}{d x}(\ln f(x))=\frac{1}{f(x)} \cdot f^{\prime}(x)$
- $\frac{d}{d x} e^{f(x)} \cdot f^{\prime}(x)$
- $\frac{d}{d x} a^{f(x)}=a^{f(x)} \cdot \ln a \cdot f^{\prime}(x)$
- $\frac{d}{d x}\left(f_{1}(x) \cdot f_{2}(x)\right)=f_{1}(x) \cdot f_{2}{ }^{\prime}(x)+f_{2}(x) \cdot f_{1}{ }^{\prime}(x)$
- $\frac{d}{d x}\left(\frac{f_{1}(x)}{f_{2}(x)}\right)=\frac{f_{2}(x) \cdot f_{1}^{\prime \prime}(x)-f_{1}(x) \cdot f_{2} \prime(x)}{\left(f_{2}(x)\right)^{2}}$

Find the derivative of each of the following:

1. $\mathrm{f}(\mathrm{x})=x^{5}$
2. $\mathrm{f}(\mathrm{x})=(5 x)^{6}$
3. $\mathrm{f}(\mathrm{x})=e^{3 x}$
4. $f(x)=\frac{1}{5 x}$
5. $f(x)=3^{x}$
6. $f(x)=5^{2 x}$
7. $f(x)=7 x \cdot e^{3 x}$
8. $f(x)=\frac{4 x}{2 x+5}$

Integration:

- $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
- $\int(f(x))^{n} \cdot f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+C$
- $\int \frac{1}{x} d x=\ln |x|+C$
- $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$
- $\int e^{x} d x=e^{x}+C$
- $\int e^{f(x)} \cdot f^{\prime}(x) d x=e^{f(x)}+C$
- $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
- $\int a^{f(x)} f^{\prime}(x) d x=\frac{a^{f(x)}}{\ln a}+C$

Some example:
Find the integration of the following functions. for all the limits are from a to b.

$$
\begin{array}{lr}
\text { 1. } & f(x)=x^{4} \\
\text { 2. } & \frac{1}{5}\left[b^{5}-a^{5}\right] \\
\text { 3. } & f(x)=6 x^{3} \\
\text { 4. } & \frac{3}{2}\left[b^{4}-a^{4}\right] \\
& f(x)=2 x \cdot e^{4 x} \\
& \frac{1}{4}\left[e^{4 b}-e^{4 a}\right] \\
& =\boldsymbol{f}_{\mathbf{1}}(\boldsymbol{x}) \cdot \boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} \\
& =\boldsymbol{f}_{\mathbf{1}}(\boldsymbol{x}) \cdot \int \mathrm{f}_{\mathbf{2}}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} \\
& -\int \boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x}) \cdot \boldsymbol{f}_{\mathbf{1}}^{\prime}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}
\end{array}
$$

This rule is called integration by parts.

$$
\begin{aligned}
& \text { e.g. } \quad f(x)=\frac{x}{2} e^{x} \\
& =\int_{a}^{b} \frac{x}{2} \cdot e^{x} d x
\end{aligned}
$$

Here: $f_{1}(x)=\frac{x}{2} \quad$ and $\quad f_{2}(x)=e^{x}$ So according to the formula,

$$
\begin{aligned}
& =\frac{x}{2} \cdot \int_{a}^{b} e^{x} d x-\int_{a}^{b} e^{x}\left(\frac{d}{d x}\left(\frac{x}{2}\right)\right) d x \\
& =\left.\frac{x}{2} e^{x}\right|_{a} ^{b}-\frac{1}{2} \int_{a}^{b} e^{x} d x
\end{aligned}
$$

$$
=\frac{b}{2} e^{b}-\frac{a}{2} e^{a}-\frac{1}{2}\left[\left.e^{x}\right|_{a} ^{b}\right]
$$

$$
=\frac{b}{2} e^{b}-\frac{a}{2} e^{a}-\frac{1}{2}\left[e^{b}-e^{a}\right]
$$

Gamma Function

- $\sqrt{\mathrm{n}}=\int_{0}^{\infty} x^{n-1} e^{-x} d x$
- $\sqrt { n } = (n - 1) ! = (n - 1) \longdiv { (n - 1) }$
- $\sqrt{\frac{1}{2}}=\sqrt{\Pi}$
- $0!=1$
- 1 ! = 1
- $n!=n \times(n-1) \times(n-2) \times(n-3) \times(n-4) x$--------x $3 \times 2 \times 1$
- $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$!
> Examples:

$$
\text { 1. } \begin{aligned}
\int_{0}^{\infty} x^{5} \cdot e^{-x} d x= & \int_{0}^{\infty} x^{5+1-1} e^{-x} d x \\
& =\sqrt{6}=5!
\end{aligned}
$$

2. $\int_{0}^{\infty} x^{4} e^{-3 x} d x=\frac{1}{3^{5}} \int_{0}^{\infty}(3 x)^{4} e^{-3 x} .3 d x$ $=\frac{1}{3^{5}} \int_{0}^{\infty}(y)^{4+1-1} e^{-4} \quad($ let $3 \mathrm{x}=\mathrm{y})$

$$
= \frac { 1 } { 3 ^ { 5 } } \longdiv { (5) } = \frac { 4 ! } { 3 ^ { 5 } }
$$

3. $\int_{0}^{\infty} y^{2} \cdot e^{-\frac{y}{5}} d y=5^{3} \int_{0}^{\infty}\left(\frac{y}{5}\right)^{2} \cdot e^{-\left(\frac{y}{5}\right)} \cdot \frac{1}{5} \cdot d y$

$$
=u^{2} \int_{0}^{\infty} u^{2} \cdot e^{-u} d u
$$

$$
=5^{3} \sqrt{3}=5^{3} \times 2!
$$

4. $\int_{0}^{\infty} u^{\frac{1}{2}} \cdot e^{-\frac{u}{3}} d u=3^{\frac{3}{2}} \int_{0}^{\infty}\left(\frac{u}{3}\right)^{\frac{1}{2}} \cdot e^{-\frac{u}{3}} \cdot \frac{1}{3} d u$

$$
=3^{\frac{3}{2}} \int_{0}^{\infty} x^{\frac{1}{2}} \cdot e^{-x} d x \quad\left(\text { let } \frac{u}{3}=x\right)
$$

$$
=3^{\frac{3}{2}} \int_{0}^{\infty} x^{\frac{3}{2}-1} \cdot e^{-x} d x
$$

$$
=3^{\frac{3}{2}} \cdot \sqrt{\frac{3}{2}}
$$

$$
=3^{\frac{3}{2}} \cdot \frac{1}{2} \cdot \sqrt{\frac{1}{2}}
$$

$$
=\frac{3}{2}^{\frac{3}{2}} \cdot \sqrt{\pi}
$$

BETA FUNCTION.

$$
\begin{gathered}
\mathrm{B}(\mathrm{a}, \mathrm{~b})=\int_{0}^{1} x^{a-1} \cdot(1-x)^{b-1} d x \\
\frac{\sqrt{a} \cdot \sqrt{b}}{\sqrt{a+b}}
\end{gathered}
$$

Examples:

Evaluate each of the following integrals.

1. $\int_{0}^{1} x^{2}(1-x)^{3} d x=\int_{0}^{1} x^{3-1} \cdot(1-x)^{4-1} d x$

$$
\beta(3,4)=\frac{\sqrt{3} \sqrt{4}}{\sqrt{7}}=\frac{2!.3!}{6!}
$$

2. $\int_{0}^{1} 5 x^{3}(1-x)^{2} d x=5 \int_{0}^{1} x^{4-1}(1-x)^{3-1} d x$

$$
\begin{aligned}
& =5 \beta(4,3)=5 \frac{\sqrt{4} \cdot \sqrt{3}}{\sqrt{7}} \\
& =5 \cdot \frac{3!\times 2!}{6!}=? ?
\end{aligned}
$$

3. $\int_{0}^{1} 2(1-x)^{3} d x=2 \int_{0}^{1} x^{1-1} \cdot(1-x)^{4-1} d x$

$$
=2 \beta(1,4)=2 \cdot \frac{\sqrt{1} \sqrt{4}}{\sqrt{5}}=\frac{1}{2}
$$

Sets :
Difference between two events A and $B=A-B$ is the events that consisting of all outcomes that are only in A.
$\mathrm{A}-\mathrm{B}=A \cap B^{\prime}=$ event A occurs and event B does not occur.
$\mathrm{B}-\mathrm{A}=A^{\prime} \cap B=$ event B occurs and event A does not occur.
$A^{\prime} \cap B^{\prime}=$ neither A nor B occur.
$A^{\prime} \cup B=$ Event B or not event A occur.
$A \cup B^{\prime}=$ Event A occurs or not event B occur.
$A^{\prime} \cup B^{\prime}=$ either not A or not B occur

Demorgan's laws:

$$
\begin{aligned}
& (\overline{A \cup B})=A^{\prime} \cap B^{\prime} \\
& (\overline{A \cap B})=A^{\prime} \cup B^{\prime}
\end{aligned}
$$

Kinds of events:

Simple events: is an event that contains only one element(outcome. e.g. if a die is rolled once and a 6 turned up i.e. A is an event of appearing number 6 when the die is rolled only once. $A=\{6\}$ is a simple event.

Compound event: is an event that contains more than one element. e.g. a die is rolled once and the C is an event of getting an odd number, so
$C=\{1,3,5\}$ is a compound event.

Sure event: is an event that contains all outcomes of the sample space S. e.g. E is an event of getting a number when die is rolled one time, so
$E=\{1,2,3,4,5,6\}$

Null or impossible event: is an event that does not contain any element (outcome) of the sample space, and is denoted by ϕ. e.g. the event of getting a letter when a die is rolled once. Or the event of getting a number when a coin is flipped.

